Skip to main content.
Advanced search >
<< Back to previous page Print

<< Tuesday, October 02, 2018 >>


Remind me

Tell a friend

Add to my Google calendar (bCal)

Download to my calendar

Bookmark and ShareShare


Seminar 217, Risk Management: Predicting Portfolio Return Volatility at Median Horizons

Seminar: Risk Seminar | October 2 | 11 a.m.-12:30 p.m. | 1011 Evans Hall


Speaker: Dangxing Chen, UC Berkeley

Consortium for Data Analytics in Risk


Commercially available factor models provide good predictions of short-horizon (e.g. one day or one week) portfolio volatility, based on estimated portfolio factor loadings and responsive estimates of factor volatility. These predictions are of significant value to certain short-term investors, such as hedge funds. However, they provide limited guidance to long-term investors, such as Defined Benefit pension plans, individual owners of Defined Contribution pension plans, and insurance companies. Because return volatility is variable and mean-reverting, the square root rule for extrapolating short-term volatility predictions to medium-horizon (one year to five years) risk predictions systematically overstates (understates) medium-horizon risk when short-term volatility is high (low). In this paper, we propose a computationally feasible method for extrapolating to medium-horizon risk predictions in one-factor models that substantially outperforms the square root rule.


jschellenberg@berkeley.edu