Skip to main content.
Advanced search >
<< Back to previous page Print

<< Monday, October 21, 2013 >>

Remind me

Tell a friend

Add to my Google calendar (bCal)

Download to my calendar

Bookmark and ShareShare

Dissertation Talk: Beyond Deep Learning: Scalable Methods and Models for Learning

Seminar: Departmental | October 21 | 3:30-4:30 p.m. | International Computer Science Institute (ICSI), 6th floor, conference room 6A

1947 Center St., Berkeley, CA

Oriol Vinyals, UC Berkeley

Electrical Engineering and Computer Sciences (EECS)

In this talk I will briefly describe several techniques I explored in my thesis that improve how to efficiently model signal representations and learn useful information from them. The building block of my dissertation is based on machine learning approaches to classification, where a (typically non-linear) function is learned from labeled examples to map from signals to some useful information (e.g. an object class present an image, or a word present in an acoustic signal).

One of the motivating factors of my work has been advances in neural networks in deep architectures (which has led to the terminology "deep learning"), and that has shown state-of-the-art performance in acoustic modeling and object recognition -- the main focus of this thesis. In my work, I have contributed to both the learning (or training) of such architectures through faster and robust optimization techniques, and also to the simplification of the deep architecture model to an approach that is simple to optimize. Furthermore, I derived a theoretical bound showing a fundamental limitation of shallow architectures based on sparse coding (which can be seen as a one hidden layer neural network), thus justifying the need for deeper architectures, while also empirically verifying these architectural choices on speech recognition.

Many of my contributions have been used in a wide variety of applications, products and datasets as a result of many collaborations within ICSI and Berkeley, but also at Microsoft Research and Google Research.