Design Innovation from Nature Lecture: "Learning from plants for livable architecture and sustainable building construction of the 21st century"

Lecture | October 4 | 4-5 p.m. | 2060 Valley Life Sciences Building

 Thomas Speck, University of Freiburg

 Design Innovation from Nature

During the last decades biomimetics has attracted increasing attention as well from basic and applied research as from various fields of industry, architecture and especially from building construction. Biomimetics has a high innovation potential and offers the possibility for the development of sustainable technical products and production chains. The huge number of organisms with the specific structures and functions they have developed during evolution in adaptation to differing environments represents the basis for all biomimetic R&D-projects. Novel sophisticated methods for quantitatively analysing and simulating the form-structure-function-relationship on various hierarchical levels allow new fascination insights in multi-scale mechanics and other functions of biological materials and surfaces. On the other hand, new production methods enable for the first time the transfer of many outstanding properties of the biological role models into innovative biomimetic products for reasonable costs. Within the framework of the new Collaborative Research Centre CRC 141 “Biological Design and Integrative Structures” an interdisciplinary team aims to explore the potential of biomimetics for a new smart kind of bioinspired architecture.

After a short introduction into the topic, the interdisciplinary approach and the different process sequences for the development of biomimetic materials for building construction are presented. Main focus is laid on bioinspired light-weight and damping materials and structures as well as on self-x-materials. Examples include branched fiber-reinforced light-weight composite materials, structural materials with a high energy dissipation capacity as fiber-reinforced graded foams and thin-layer compound materials, bioinspired anti-adhesive materials and surfaces, bioinspired self-repairing structural materials, and the biomimetic façade-shading systems flectofin® and flectofold inspired by the bird of paradise flower and the waterwheel plant, respectively.

 510-642-4942