Alcohol and Amine Derivatives Guide Position-Selective C–H Functionalization Reactions

Seminar | May 3 | 10-11 a.m. | 775 Tan Hall

 Prof. Jennifer Roizen, Dept. of Chemistry, Duke University

 College of Chemistry

Free radical reactions represent an important and versatile class of chemical transformations. Nitrogen-centered radical applications remain underexplored due to the lack of convenient methods for their generation. Recent advances have improved access to nitrogen-centered radicals through photoredox-mediated oxidation of two such directing groups: amides and sulfonamides. Guided by this approach, we hypothesized that alcohols, masked as sulfamate esters, and amines, masked as sulfamides, could engage in photoredox-mediated oxidation to furnish nitrogen-centered radicals that could guide C–H functionalization reactions.

Jennifer L. Roizen is an Assistant Professor at Duke University and a 2017 Thieme Chemistry Journals Award recipient. She had her first taste of synthetic research with J. Hodge Markgraf and Tom Smith as a Williams College undergraduate, where she advanced syntheses of benzoisocanthenones and contributed to publications on the total synthesis of hennoxazole A (a marine natural product). She moved to the California Institute of Technology to earn a Ph.D. with Brian Stoltz, researching approaches to access the ineleganolide core. These Cope-centric approaches remain the only published strategies to access the all carbon framework of ineleganolide, a small molecule that continues to elude synthetic campaigns. Upon graduation, Dr. Roizen became an NIH postdoctoral researcher and CMAD fellow with Justin Du Bois at Stanford University, where they extended intermolecular amination technologies. Dr. Roizen’s laboratory researches total synthesis and the development of cross-coupling and C–H functionalization processes.

 meggie@berkeley.edu

 Alcohol and Amine Derivatives Guide Position-Selective C–H Functionalization Reactions