BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//University of California\, Berkeley//UCB Events Calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
DTSTART:19701029T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
BEGIN:DAYLIGHT
DTSTART:19700402T020000
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP:20170322T053726Z
DTSTART;TZID=America/Los_Angeles:20170324T140000
DTEND;TZID=America/Los_Angeles:20170324T160000
TRANSP:OPAQUE
SUMMARY:Estimating Probability weights of Deterministic many-body Systems in their Steady States
UID:108201-ucb-events-calendar@berkeley.edu
ORGANIZER;CN="UC Berkeley Calendar Network":
LOCATION:775B Tan Hall
DESCRIPTION:Dr. Zdenek Preisler\, LBNL\n\nObservations of phenomena like phase separation in non-equilibrium steady states\, similar to those found in equilibrium systems motivates attempts to rigorously estimate the probability distribution of the underlying states.\nHere\, we numerically investigate the probability measures of deterministic i) equilibrium systems and ii) out-of-equilibrium systems in their steady states\, for which the Boltzmann-Gibb measure is not valid.\nIn particular we are motivated by results of Tuckerman et. al. [1] on the isokinetic ensemble together with the works on the fluctuation theorem by Evans et al. [2]\, and Gallavotti et al. [3] pointing out the possible significance of the dynamical measures introduced by Sinai\, Ruelle and Bowen [4].\nUnfortunately\, these dynamical measures are computationally difficult to determine.\nNevertheless\, we show that due to the advancement in computational power one can use these to numerically estimate probability weights of strongly chaotic deterministic systems using brute force.\nSpecifically\, we study deterministic many-body systems with isokinetic (equilibrium) and SLLOD (shear) equations of motions.\nFirst\, we recover the Boltzmann factor for isokinetic ensemble verifying validity of our approach and then we apply the methodology to obtain probability weights of a system under shear.\n\n[1] M. E. Tuckerman\, C. J. Mundy and G. J. Martyna\, EPL (Europhysics Letters)\, 1999\, 45\, 149.\n[2] D. J. Evans\, E. G. D. Cohen and G. P. Morriss\, Phys. Rev. Lett.\, 1993\, 71\, 2401–2404.\n[3] G. Gallavotti and E. G. D. Cohen\, Phys. Rev. Lett.\, 1995\, 74\, 2694–2697.\n[4] J. P. Eckmann and D. Ruelle\, Rev. Mod. Phys.\, 1985\, 57\, 617–656.
URL:http://events.berkeley.edu/index.php/calendar/sn/pubaff.html?event_ID=108201&view=preview
SEQUENCE:0
CLASS:PUBLIC
CREATED:20170322T053726Z
LAST-MODIFIED:20170322T053726Z
X-MICROSOFT-CDO-BUSYSTATUS:BUSY
X-MICROSOFT-CDO-INSTTYPE:0
X-MICROSOFT-CDO-IMPORTANCE:1
X-MICROSOFT-CDO-OWNERAPPTID:-1
END:VEVENT
END:VCALENDAR