BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//University of California\, Berkeley//UCB Events Calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
DTSTART:19701029T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
BEGIN:DAYLIGHT
DTSTART:19700402T020000
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP:20170123T191319Z
DTSTART;TZID=America/Los_Angeles:20170123T161000
DTEND;TZID=America/Los_Angeles:20170123T170000
TRANSP:OPAQUE
SUMMARY:Analysis Seminar: A Proof of Onsager’s Conjecture for the Incompressible Euler Equations
UID:106217-ucb-events-calendar@berkeley.edu
ORGANIZER;CN="UC Berkeley Calendar Network":
LOCATION:939 Evans Hall
DESCRIPTION:Philip Isett\, MIT\n\nIn an effort to explain how anomalous dissipation of energy occurs in hydrodynamic turbulence\, Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations may fail to exhibit conservation of energy if their spatial regularity is below $\\frac13$-Hölder. I will discuss a proof of this conjecture that shows that there are nonzero\, $(\\frac13-\\epsilon)$-Hölder Euler flows in 3D that have compact support in time. The construction is based on a method known as "convex integration\," which has its origins in the work of Nash on isometric embeddings with low codimension and low regularity. A version of this method was first developed for the incompressible Euler equations by De Lellis and Székelyhidi to build Hölder-continuous Euler flows that fail to conserve energy\, and was later improved by Isett and by Buckmaster-De Lellis-Székelyhidi to obtain further partial results towards Onsager's conjecture. The proof to be discussed of the full conjecture combines a new idea in the convex integration scheme due to Daneri-Székelyhidi with a new "gluing approximation" technique. The latter technique exploits a special structure in the linearization of the incompressible Euler equations.
URL:http://events.berkeley.edu/index.php/calendar/sn/pubaff.html?event_ID=106217&view=preview
SEQUENCE:0
CLASS:PUBLIC
CREATED:20170123T191319Z
LAST-MODIFIED:20170123T191319Z
X-MICROSOFT-CDO-BUSYSTATUS:BUSY
X-MICROSOFT-CDO-INSTTYPE:0
X-MICROSOFT-CDO-IMPORTANCE:1
X-MICROSOFT-CDO-OWNERAPPTID:-1
END:VEVENT
END:VCALENDAR