Student Arithmetic Geometry Seminar: Lifting twisted K3 surfaces to characteristic $0$.

Seminar | September 20 | 4:10-5 p.m. | 891 Evans Hall

 Daniel Bragg, UC Berkeley

 Department of Mathematics

Deligne showed that every $K3$ surface over a field of positive characteristic lifts to characteristic $0$. We will explain how to prove the same result for a twisted $K3$ surface, the most interesting case being when the characteristic divides the order of the Brauer class.