BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//University of California\, Berkeley//UCB Events Calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
DTSTART:19701029T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
BEGIN:DAYLIGHT
DTSTART:19700402T020000
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP:20190913T014941Z
DTSTART;TZID=America/Los_Angeles:20190918T150000
DTEND;TZID=America/Los_Angeles:20190918T160000
TRANSP:OPAQUE
SUMMARY:BLISS Seminar: Sample complexity of mixture of sparse linear regressions
UID:128317-ucb-events-calendar@berkeley.edu
ORGANIZER;CN="UC Berkeley Calendar Network":
LOCATION:400 Cory Hall
DESCRIPTION:Arya Mazumdar\, University of Massachusetts Amherst\n\nIn the problem of learning mixtures of linear regressions\, the goal is to learn a collection of signal vectors from a sequence of (possibly noisy) linear measurements\, where each measurement is evaluated on an unknown signal drawn uniformly from this collection. This setting is quite expressive and has been studied both in terms of practical applications and for the sake of establishing theoretical guarantees. In this paper\, we consider the case where the signal vectors are sparse\; this generalizes the popular compressed sensing paradigm. We improve upon the state-of-the-art results as follows: In the noisy case\, we resolve a major open question of Yin et al.2019\, by showing how to handle collections of more than two vectors and present the first robust reconstruction algorithm\, i.e.\, if the signals are not perfectly sparse\, we still learn a good sparse approximation of the signals. In the noiseless case\, as well as in the noisy case\, we show how to circumvent the need for a restrictive assumption required in the previous work. Our techniques are quite different from those in the previous work: for the noiseless case\, we rely on a property of sparse polynomials and for the noisy case\, we provide new connections to learning Gaussian mixtures and use ideas from the theory of error correcting codes.\n\nWhat does this have to do with the deletion channel? Turns out that a popular recovery problem in the deletion channel\, called trace reconstruction\, leads to developing tools and techniques that we use in the above project.
URL:http://events.berkeley.edu/index.php/calendar/sn/pubaff.html?event_ID=128317&view=preview
SEQUENCE:0
CLASS:PUBLIC
CREATED:20190913T014941Z
LAST-MODIFIED:20190913T141112Z
X-MICROSOFT-CDO-BUSYSTATUS:BUSY
X-MICROSOFT-CDO-INSTTYPE:0
X-MICROSOFT-CDO-IMPORTANCE:1
X-MICROSOFT-CDO-OWNERAPPTID:-1
END:VEVENT
END:VCALENDAR