BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//University of California\, Berkeley//UCB Events Calendar//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VTIMEZONE
TZID:America/Los_Angeles
BEGIN:STANDARD
TZOFFSETFROM:-0700
TZOFFSETTO:-0800
DTSTART:19701029T020000
RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU
END:STANDARD
BEGIN:DAYLIGHT
DTSTART:19700402T020000
TZOFFSETFROM:-0800
TZOFFSETTO:-0700
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU
END:DAYLIGHT
END:VTIMEZONE
BEGIN:VEVENT
DTSTAMP:20180112T215215Z
DTSTART;TZID=America/Los_Angeles:20180123T161000
DTEND;TZID=America/Los_Angeles:20180123T170000
TRANSP:OPAQUE
SUMMARY:Thematic Seminar: Applied Mathematics: Nonlinear Fluid-Structure Interaction with Fiber-Reinforced Soft Composites: A Unified Mathematical Framework for Mathematical Analysis and Computation
UID:114402-ucb-events-calendar@berkeley.edu
ORGANIZER;CN="UC Berkeley Calendar Network":
LOCATION:740 Evans Hall
DESCRIPTION:Suncica Canic\, University of Houston\n\nFiber-reinforced structures arise in many engineering and biological applications. Examples include space inflatable habitats\, vascular stents supporting compliant vascular walls\, and aortic valve leaflets. In all these examples a metallic mesh\, or a collection of fibers\, is used to support an elastic structure\, and the resulting composite structure has novel mechanical characteristics preferred over the characteristics of each individual component. These structures interact with the surrounding deformable medium\, e.g.\, blood flow or air flow\, or another elastic structure\, constituting a fluid-structure interaction (FSI) problem. Modeling and computer simulation of this class of FSI problems is important for manufacturing and design of novel materials\, space habitats\, and novel medical constructs.\n\nMathematically\, these problems give rise to a class of highly nonlinear\, moving-boundary problems for systems of partial differential equations of mixed type. To date\, there is no general existence theory for solutions of this class of problems\, and numerical methodology relies mostly on monolithic/implicit schemes\, which suffer from bad condition numbers associated with the fluid and structure sub-problems.\n\nIn this talk we present a unified mathematical framework to study existence of weak solutions to FSI problems involving incompressible\, viscous fluids and elastic structures. The mathematical framework provides a constructive existence proof\, and a partitioned\, loosely coupled scheme for the numerical solution of this class of FSI problems. The constructive existence proof is based on time-discretization via operator splitting\, and on our recent extension of the Aubin-Lions-Simon compactness lemma to problems on moving domains. The resulting numerical scheme has been applied to problems in cardiovascular medicine\, showing excellent performance\, and providing medically beneficial information.
URL:http://events.berkeley.edu/index.php/calendar/sn/pubaff.html?event_ID=114402&view=preview
SEQUENCE:0
CLASS:PUBLIC
CREATED:20180112T215215Z
LAST-MODIFIED:20180112T215215Z
X-MICROSOFT-CDO-BUSYSTATUS:BUSY
X-MICROSOFT-CDO-INSTTYPE:0
X-MICROSOFT-CDO-IMPORTANCE:1
X-MICROSOFT-CDO-OWNERAPPTID:-1
END:VEVENT
END:VCALENDAR