Skip to main content.
Advanced search >
<< Back to previous page Print

<< Wednesday, November 29, 2017 >>


Remind me

Tell a friend

Add to my Google calendar (bCal)

Download to my calendar

Bookmark and ShareShare


Causal Inference in the Presence of Interference

Seminar: Neyman Seminar | November 29 | 4-5 p.m. | 1011 Evans Hall


Michael Hudgens, UNC-Chapel Hill

Department of Statistics


A fundamental assumption usually made in causal inference is that of no interference between individuals (or units), i.e., the potential outcomes of one individual are assumed to be unaffected by the treatment assignment of other individuals. However, in many settings, this assumption obviously does not hold. For example, in infectious diseases, whether one person becomes infected depends on who else in the population is vaccinated. In this talk we will discuss recent approaches to assessing treatment effects in the presence of interference. Inference about different direct and indirect (or spillover) effects will be considered in a population where individuals form groups such that interference is possible between individuals within the same group but not between individuals in different groups. Analyses of a cholera vaccine study in over 100,000 individuals in Matlab, Bangladesh will be presented which indicate a significant indirect effect of vaccination.


(510) 642-2781