Combinatorics Seminar: Near-Equality of Ribbon Schur Functions

Seminar | September 24 | 12-1 p.m. | 939 Evans Hall

 Foster Tom, UC Berkeley

 Department of Mathematics

We consider the problem of when the difference of two ribbon Schur functions is a single Schur function. We prove that this near-equality phenomenon occurs in fourteen infinite families and we conjecture that these are the only possible cases. Towards this converse, we prove that under certain additional assumptions the only instances of near-equality are among our fourteen families. In particular, we prove that our first ten families are a complete classification of all cases where the difference of two ribbon Schur functions is a single Schur function whose corresponding partition has at most two parts at least 2. We also provide a framework for interpreting the remaining four families and we explore some ideas towards resolving our conjecture in general. We also determine some necessary conditions for the difference of two ribbon Schur functions to be Schur-positive.

 events@math.berkeley.edu