Skip to main content.
Advanced search >
<< Back to previous page Print

<< Thursday, May 16, 2013 >>

Remind me

Tell a friend

Add to my Google calendar (bCal)

Download to my calendar

Bookmark and ShareShare

Dissertation Talk: Minimally Invasive Platforms for Neural Recording

Seminar: Departmental | May 16 | 11 a.m.-12 p.m. |  2108 Allston Way (Berkeley Wireless Research Center)

Rikky Muller

Electrical Engineering and Computer Sciences (EECS)

Clinically viable and minimally invasive neural interfaces stand to revolutionize disease care for patients of neurological conditions. For example, recent research in Brain-Machine Interfaces has shown success in using electronic signals from the motor cortex of the brain to control artificial limbs, providing hope for patients with spinal cord injuries. Currently, neural interfaces are large, wired and require open-skull operation. Future, less invasive interfaces with increased numbers of electrodes, signal processing and wireless capability will enable prosthetics, disease control and completely new user-computer interfaces.

In this talk, I will first present a signal-acquisition front end for neural recording that uses a digitally intensive architecture to reduce system area and enable operation from a 0.5V supply. The entire front-end occupies only 0.013mm2 while including “per-pixel” digitization, and enables simultaneous recording of LFP and action potentials for the first time. Next I will talk about the development of a minimally invasive yet scalable wireless platform for electrocorticography (ECoG), an electrophysiological technique where electrical potentials are recorded from the surface of the cerebral cortex, greatly reducing cortical scarring and improving implant longevity. We tightly integrate a high-density flexible MEMS electrode array with active circuits and a power-receiving antenna to realize a fully implantable system in a very small footprint. Building on the previously developed digitally intensive architecture, an order of magnitude in circuit area reduction is realized with 3x improvement in power efficiency over state-of-the-art enabling a scalable platform for 64-channel recording and beyond. Electrical as well as in-vivo animal measurements will be presented.