Nanomaterials Enable Delivery of Functional Genetic Material Without Transgenic DNA Integration in Mature Plants

Seminar | May 1 | 12-1 p.m. | 106 Stanley Hall

 Markita Landry, University of California, Berkeley

 Bioengineering (BioE)

Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis, and agricultural crop engineering. The plant cell wall is a barrier that limits the ease and throughput with which exogenous biomolecules can be delivered to plants. Current delivery methods either suffer from host range limitations, low transformation efficiencies, tissue regenerability, tissue damage, or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into tissues and organs of intact plants of several species with a suite of pristine and chemically-functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in mature Nicotiana benthamiana, Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts [1]. We also demonstrate a second nanoparticle-based strategy in which small interfering RNA (siRNA) is delivered to mature Nicotiana benthamiana leaves and effectively silence a gene with 95% efficiency. We find that nanomaterials both facilitate biomolecule transport into plant cells, while also protecting polynucleotides such as RNA from nuclease degradation. DNA origami nanostructures further enable siRNA delivery to plants at programmable nanostructure loci [2]. Our work provides a tool for species-independent, targeted, and passive delivery of genetic material, without transgene integration, into plant cells for diverse plant biotechnology applications.

1. Demirer, G.S., Zhang, H., Matos, J., Goh, N., Cunningham, F.J., Sung, Y., Chang, R., Aditham, A.J., , Chio, L., Cho, M.J., Staskawicz, B., Landry, M.P. High Aspect Ratio Nanomaterials Enable Delivery of Functional Genetic Material Without DNA Integration in Mature Plants. Nature Nanotechnology (2019). DOI: 10.1038/s41565-019-0382-5NNANO-18081684

2. Zhang, H.*, Demirer, G.S.*, Zhang, H., Ye, T., Goh, N.S., Aditham, A.J., Cunningham, F.J., Fan, C., Landry, M.P. Low-dimensional DNA Nanostructures Coordinate Gene Silencing in Mature Plants. PNAS (2019). DOI: 10.1073/pnas.1818290116