Antisocial Computing: Explaining and Predicting Negative Behavior Online

Lecture | April 11 | 9:40-11 a.m. | 202 South Hall

 Justin Cheng

 Information, School of

Antisocial behavior and misinformation are increasingly prevalent online. As users interact with one another on social platforms, negative interactions can cascade, resulting in complex changes in behavior that are difficult to predict. My research introduces computational methods for explaining the causes of such negative behavior and for predicting its spread in online communities. It complements data mining with crowdsourcing, which enables both large-scale analysis that is ecologically valid and experiments that establish causality. First, in contrast to past literature which has characterized trolling as confined to a vocal, antisocial minority, I instead demonstrate that ordinary individuals, under the right circumstances, can become trolls, and that this behavior can percolate and escalate through a community. Second, despite prior work arguing that such behavioral and informational cascades are fundamentally unpredictable, I demonstrate how their future growth can be reliably predicted. Through revealing the mechanisms of antisocial behavior online, my work explores a future where systems can better mediate interpersonal interactions and instead promote the spread of positive norms in communities.

 510-642-1464