Two-photon Imaging and Manipulation of Cortical Neural Circuits in vivo

Seminar | February 27 | 4-5 p.m. | 306 Soda Hall

 Weijian Yang, Columbia University

 Neuroscience Institute, Helen Wills

One challenge of understanding how the brain works is the complexity of neural circuits. These circuits are composed of hundreds of thousands of neurons that are interconnected in a highly distributed fashion. Optical methods provide a route to record and manipulate the neural activity of a small subset of these cells with cellular resolution. The desire to access a larger volume with higher spatial and temporal resolutions is a driving force in the advancement of optical microscopy.

In this talk, I will discuss our approach to tackling the above challenges through novel three-dimensional (3D) imaging and optical manipulation methods. We developed novel two-photon microscopy with beam multiplexing strategy and wavefront coding technique. The new microscope enables simultaneous imaging of neural activity across multiple layers in the mouse cortex in vivo, a challenging task in neuroscience. A similar principle is used for optical manipulation where a 3D holographic excitation pattern is projected on the mouse cortex to photostimulate a targeted group of cells. This all-optical imaging and manipulation approach achieves simultaneous reading and writing of cortical activity in 3D. Utilizing these tools, intriguing neural activity and plasticity in mouse cortex are unveiled which could lay the foundation for reprogramming the neural circuits.