Neural Circuits of Cognition in Artificial and Biological Neural Networks

Seminar | November 8 | 11 a.m.-12:30 p.m. | Berkeley Way West, 2121 Berkeley Way, Room 1102

 David Freedman, The University of Chicago

 Neuroscience Institute, Helen Wills

Humans and other advanced animals have a remarkable ability to interpret incoming sensory stimuli and plan task-appropriate behavioral responses. This talk will present parallel experimental and computational approaches aimed at understanding how visual feature encoding in upstream sensory cortical areas is transformed across the cortical hierarchy into more flexible task-related encoding in the parietal and prefrontal cortices. The experimental studies utilize multielectrode recording approaches to monitor activity of neuronal populations, as well as reversible cortical inactivation approaches, during performance of visual decision making tasks. In parallel, our computational work employs machine learning approaches to train recurrent artificial neural networks to perform the same tasks as in the experimental studies, allowing a deep investigation of putative neural circuit mechanisms used by both artificial and biological networks to solve cognitively demanding behavioral tasks.

 nrterranova@berkeley.edu