RTMP Seminar: Holonomy invariants from quantum groups

Seminar | September 11 | 4-5:30 p.m. | 939 Evans Hall

 Calvin McPhail-Snyder, UC Berkeley

 Department of Mathematics

Geometric information about a topological space $X$ can be described by a conjugacy class of representations of its fundamental group into a Lie group $G$, or equivalently by a gauge class of flat $\mathfrak g$-connections. In this talk I will discuss how to construct invariants of such spaces using quantum topology techniques, focusing in particular on $U_q(\mathfrak {sl}_2)$ at a root of unity. If time permits I will also explain a connection to the twisted Reidemeister torsion.