Analysis and PDE Seminar: Some methods to use the nonlinearities in order to control a system

Seminar | February 11 | 4:10-5 p.m. | 740 Evans Hall

 Jean-Michel Coron, UPMC

 Department of Mathematics

A control system is a dynamical system on which one can act thanks to what is called the control. For example, in a car, one can turn the steering wheel, press the accelerator pedal etc. These are the control(s). One of the main problems in control theory is the controllability problem. One starts from a given situation and there is a given target. The controllability problem is to see if, by using some suitable controls depending on time, one can move from the given situation to the desired target. We study this problem with a special emphasis on the case where the nonlinearities play a crucial role. We first recall some classical results on this problem for finite dimensional control systems. We explain why the main tool used for this problem in finite dimension, namely the iterated Lie brackets, is difficult to use for many important control systems modeled by partial differential equations. We present methods to avoid the use of these iterated Lie brackets. We give applications of these methods to various physical control systems (Euler and Navier-Stokes equations of incompressible fluids, shallow water equations, Korteweg-de Vries equations).

 tdepoyfe@math.berkeley.edu